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1 Cubic Curves

1.1 Diophantine Equations

The theory of Diophantine equations is a branch of number theory that finds integral or
rational solution of polynomial equations.

Some natural questions that mathematicians want to ask are:

• Are there integral solutions to these equations? If so, how many are there?

• Are there rational solutions to these equations? If so, how many are there?

• If any integral or rational solution exists, can we express it in terms of the coeffi-
cients of the equation?

Example 1.1. The vanilla flavor of Diophantine equations are in the form of

anxn + an−1xn−1 + · · ·+ a1x + a0 = 0,

where ai’s are integers. By Rational Root Theorem, if p
q is a rational solution of the

equation above, we have q divides an and p divides a0. This gives us list of candidates
to plug in and check.

For Diophantine equations in two variables, things can be more complicated.

Example 1.2. Consider the linear equation in two variables ax + by = c for a, b, c ∈ Z.
If gcd(a, b) divides c. We consider the set of all positive numbers of the form

S = {ax + by : x, y ∈ Z}

which by well-ordering principle, has a smallest element d. We can show by Euclidean
Algorithm that d is the gcd(a, b) and d divides all s ∈ S. Therefore, we have infinitely
many integral solutions if gcd(a, b) divides c; otherwise, we have no integral solutions.

There are infinitely many rational solutions to this equation once we see the equation
as

y = − ax
b

+ c,

since every rational number x will give a rational y.

What about Diophantine equations of degree 2?

Example 1.3. Let us find all rational solutions to the equation x2 + y2 = 1.
We need to convince ourselves that if a line ` passes through a rational point P on the

circle C and has rational slope t, then ` must meet the circle C again at another rational
point Q.

2



Pick a point P = (1, 0) and let t ∈ Q be the slope of the line ` : y = tx + 1 that passes
through P. Solving the system of equations{

y = tx + 1,
x2 + y2 = 1,

we get x = −2t
1+t2 , and y = 1−t2

1+t2 . As t varies over different rational numbers, x, y will take
in different rational values.

Definition 1.4. The set of all real solutions to an equation f (x, y) = 0 gives a curve C in
R2 called algebraic curve. Algebraic curves of degree 2 are called conics and algebraic
curves of degree 3 are called cubics or cubic curves.

Remark 1.5. • Now algebraic expressions f (x, y) and geometric objects in the plane
are in correspondence. Throughout the course, we will use the language – “let C
be a curve f (x, y)” or “we have a curve C : f (x, y)” – to indicate that C contains the
set of real points in R2 whose coordinates (x, y) satisfies the equation f (x, y) = 0.

• Elliptic curves do not have much to do with ellipses (a family of conic sections
that are given by quadratic equations). They are named so because of their first
appearance in calculation of arc length of ellipses.

This course will walk you through this beautiful subject of cubic curves, and we will
primarily focus on finding the rational points on cubic curves. In the Example above, we
see that given a rational point P on a cubic curve, we can draw the tangent line at P, and
take the third point of the intersection of the line with the cubic, thereby finding more
rational points. This “geometric operation” later on gives an abelian group structure to
the set of all rational points on a cubic curve, which is the substance of the celebrated
Mordell’s Theorem.

1.2 The Weierstrass Normal Form, Singular and Non-Singular Curves

For every cubic curve:

C : ax3 + bx2y + cxy2 + dy3 + ex2 + f xy + gy2 + hx + iy + j = 0,

for all a, b, c, d, e, f , g, h, i, j in Q. we can use projective geometry to show that there is a
simpler-looking curve in Weierstrass normal form:

C′ : y2 = f (x) = x3 + a1x2 + a2x + a3

such that C and C′ are birationally equivalent. We won’t elaborate what birational
equivalence means, but we know that it is an equivalence relation on the set of all cubic
curves. So we only need to study representatives of each equivalence class that look as
simple as Weierstrass normal form. Another nice thing about the normal form is that,
the curve is symmetric around x-axis.
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Question 1.6. What do we know about real roots of f (x)?

Analyzing the roots of f (x), we have the following situations:

(1) If f (x) has one real root α, C : f (x) = (x − α)(x2 + βx + γ) = 0 for some real
number α, β, γ ∈ R. C has one component.

(2) If f (x) has three real roots, C = f (x) = (x− α)(x− β)(x− γ) for α, β, γ ∈ R.

• If all three of the real roots are distinct, C has two components.

• If two of the real roots are the same, say α = β without loss of generality,
then in order to fully understand the geometry of C, we inspect the tangent
line of C at each point of C. Let us rewrite y2− f (x) = F(x, y) and the partial
derivatives with respect to x, y are

∂F(x, y)
∂x

= − f ′(x) and
∂F(x, y)

∂y
= 2y.

Since f (x) = (x − α)2(x − γ) = y2, then y = 0 at x = α and − f ′(α) =
−(α− α)2 − 2(α− α)(α− γ) = 0, which implies that the partial derivatives
are 0. This means that C has an singularity at (α, 0) and we say that C is a
singular curve with distinct tangent directions or a self-intersection.

• If all three roots are the same, then by the same reasoning as above, C is a
singular curve with a cusp.

Mordell’s Theorem will not hold for these singular curves, and it is not a pity since
finding rational points on a singular curve is in fact easy. To find rational points on a
singular curve is the same as conics. We can project the curve to a line from the singular
point, and a projecting line will only path through one other point on the curve. Hence
we have a one-to-one correspondence from rational points on a singular curve to a
rational points on a line; see Exercises for Day 1 for examples.

Thus we are only interested in non-singular cubic curves and they have a special
name.

Definition 1.7. If a cubic curve C : y2 = f (x) = x3 + ax2 + bx + c has distinct complex
roots, then we call this curve an elliptic curve.

1.3 The Group Law on Elliptic Curves

In fact, all the points on an elliptic curve form an abelian group. Before we do this, let
us admit a few facts from projective geometry that we won’t elaborate here (talk to me
at TAU if you are interested).

Assumption 1.8. (1) The point at infinity O is a rational point.
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(2) Our non-singular curve C contains all the points on the xy-plane and the point at
infinity O.

(3) Every line meets the cubic in three points:

• The line at infinity meets the cubic at O three times.

• A vertical line meets the cubic at two points in the xy plane and also at the
point O.

• Any non-vertical line meets the cubic in three points in the xy plane. But we
have to be careful here.

Now we can define the group structure.

• Addition: for any P, Q ∈ C, draw a line through P and Q. The line will intersect
with the cubic at a third intersection. Denote the third intersection P ∗ Q. Draw
another line through P ∗ Q and O and the line will intersect with the cubic at the
point O ∗ (P ∗Q). This is P + Q; or more precisely, we have

P + Q = O ∗ (P ∗Q).

• From this formula, we see that for any P ∈ C,

O + P = P + O = O ∗ (O ∗ P) = O ∗ (P ∗O) = P.

So O is the identity of the group.

• What is the negative of a point P on C?

• Associativity of this group law will also hold.

• Addition is abelian.

Therefore, we have obtained a group structure on the points on an elliptic curve.
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1.4 Exercises for Day 1

The projection of a singular cubic curve onto a line is one-to-one. Hence the rational
points on a singular cubic can be put in a one-to-one correspondence with rationals on
the line. The following two exercises are two examples.

Exercise 1.9. Find all the rational points of the singular cubic curve C(y2 = x3) by
parametrizing all rational x and y using a rational t.

Exercise 1.10. Find all the rational points on the singular cubic curve C(y2 = x2(x + 1))
by letting r = y

x for (y, x) 6= (0, 0).

The following exercises help you understand the group law on elliptic curves!

Exercise 1.11. Show that the group law is associative: for any P, Q, R ∈ C, (P + Q) +
R = P + (Q + R).

Exercise 1.12. If P and Q are distinct rational points in the xy-plane, prove that the line
conncecting them is a rational line.

Exercise 1.13. Let C be a non-singular cubic curve. Let C(Q), C(R), C(C) be the rational
points, real points, complex points on C. Show that each of C(Q), C(R), C(C) is an
additive group under the addition defined in the group law.

This exercise will give you a formula called “Duplication Formula”, which will be
an important tool later.

Exercise 1.14. Compute an explicit expression for the coordinates of 2P in terms of the
coordinates for P on C : y2 = x3 + ax2 + bx + c.

Exercise 1.15. Let C : y2 = x3 + ax2 + bx + c be a non-singular cubic curve. Let P =
(x, y) be a point on C. Find a polynomial in x whose roots are the x coordinates of the
points Q = (x, y) satisfying 3Q = O. 1

Exercise 1.16. Consider the point P = (3, 8) on the cubic curve y2 = x3 − 43x + 166.
Compute P, 2P, 3P, 4P and 8P. What do you find?

This exercise shows you an example of birational transformation.

Exercise 1.17. If u, v satisfies the relation u3 + v3 = α, then the quantities x = 12α
u+v ,

y = 36α u−v
u+v satisfies y2 = x3 − 432α2. This gives a birational transformation from the

curve u3 + v3 = α to the curve y2 = x3 − 432α2

1 Hint:Therelation3Q=Ocanbetranslatedinto2Q=−Q.
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2 A Hike to Mordell’s Theorem

Let’s wander where the WiFi is weak

Anonymous

Throughout, we assume our non-singular cubic curve C is given by a Weierstrass
form:

y2 = x3 + ax2 + bx + c,

where a, b, c are rationals. Recall that the “non-singularity” condition translates into the
case that the elliptic curve C : y2 = f (x) crosses x-axis at exactly one or three distinct
points; in other words, f (x) has three distinct roots (real or complex). Recall that the
points on C have a group structure and O is the identity element of the group.

Yesterday, we have seen that C ∪ {O} is an abelian group.

Definition 2.1. An element P of any group element is said to have order n if

nP = P + P + · · ·+ P︸ ︷︷ ︸
n times

= O

and mP 6= O for all 1 ≤ m < n. If n < ∞, we say that P has finite order; if n = ∞, P has
infinite order.

To study furthermore about the structure of points on C, we can ask ourselves the
following questions.

• Are there points of finite orders?

• Are there points of order 2?

• Are there points of order 3?

To answer the first question, we want to find P ∈ C such that 2P = O and P 6= O, which
is the same as P = −P. These are the points on C that are lying on the x-axis or floating
in the vast space of C that we cannot draw on xy-plane. But if we include these complex
roots, we get 4 points of order 2:

P1 = (α1, 0), P2 = (α2, 0), P3(α3, 0),

where α1, α2, α3 are real or complex.

Question 2.2. What is the relation between the three points plus the point O at infinity?

Proposition 2.3. The set of points π2 of order 2 on C : y2 = f (x) can be described as follows.

(i) If we consider π2 ⊆ C(C), then π2
∼= Z2 ×Z2, the Klein Four Group.
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(ii) If we consider π2 ⊆ C(R), then π2
∼= Z2 (if f (x) has 1 real root) or π2

∼= Z2 ×Z2 (if
f (x) has 3 real roots).

(iii) If we consider π2 ⊆ C(Q), then π2
∼= Z2 (if f (x) has 1 real root) or π2

∼= Z2 ×Z2 (if
f (x) has 3 real roots), or π2 = {O} is trivial.

To answer the second question (cf. Exercises for Day 1), we want to find points
P such that 3P = O but P 6= O and 2P 6= O. If such point P = (x, y) exists, then
2P = (x′, y′) = −P implies that x = x′.

Using the “Duplication Formula” that you found out in Exercises in Day 1

x′ =
x4 − 2bx2 − 8cx + b2 − 4bc

4x3 + 4ax2 + 4bx + 4c
.

Then x is a root of the polynomial

p(x) = 3x4 + 4ax3 + 6bx2 + 12cx + (4ac− b2).

From these calculation you can see that the computation of the Mordell-Weil group
could be a total mess.

2.1 Mordell’s Theorem for Curves with a Rational Point of Order Two

In this class, we state Mordell’s Theorem for non-singular curves with a rational point
of order two and see a bunch of examples that will illustrate the ideas.

Theorem 2.4. Let C be a non-singular cubic curve given by an equation

C : y2 = x3 + ax2 + bx,

where a and b are integers and C has a rational point of order two. Then the group of rational
points, or Mordell-Weil group, C(Q) is a finitely generated abelian group.

Theorem 2.5 (Structure Theorem for Finitely Generatedy Abelian Groups). A finitely
generated abelian group G is isomorphic to

Z×Z× · · · ×Z︸ ︷︷ ︸
r is called rank

×Zp
α1
1
×Zpα2

2
× · · · ×Zpαn

n
,

where each pi is a prime and each αi is a positive integer.

Mordell’s Theorem gives us some hope in fully describing the rational points on
elliptic curves.

Example 2.6. For C : y2 = x3 − 5x, C(Q) has rank 1.

Example 2.7. For C : y2 = x3 + x and C : y2 + 4x, C(Q) are finite.
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Example 2.8. For C : y2 = x3 + px where p ≡ 7, 11 (mod 16), C(Q) is finite.

In this section, we prove Mordell’s Theorem that the group of rational points on a
non-singular cubic is finitely generated for curves that have a rational points of order
2 to start with. To do this, we need to define some useful tools to help us understand
rational points on this cubics.

Throughout, we work with non-singular cubic curves C : y2 = x3 + ax2 + bx + c for
a, b, c ∈ Z.

2.2 Heights

Some rational points are complicated, some of them are not.

Definition 2.9. Let x = p
q be a rational number written in reduced terms. Then the

height H(x) is the maximum of the absolute values of the numerator and the denomi-
nator. That is,

H(x) = H
(

p
q

)
= max{|p|, |q|}.

Question 2.10. Given positive integer m, how many rationals x are there such that
H(x) ≤ m?

Definition 2.11. For a rational point P = (x, y) on a curve C, we define the height of
P to be the height of its x-coordinate. For calculation convenience, we define “small
height” h(P) to be log(H(P)).

Note that h(P) is a non-negative real number, so we are really on a hike.

Lemma 2.12. Given a non-negative real number m, the set

{P ∈ C(Q) : h(P) ≤ m}

is finite.

Lemma 2.13. Fix P0 on C. For all P ∈ C(Q), there exists a constant k0 that only depends on
P0, a, b, c such that

h(P + P0) ≤ 2h(P) + k0.

Lemma 2.14. For all P ∈ C(Q), there exists a constant k, that only depends on a, b, c such that

h(2P) ≥ 4h(P)− k.

Remark 2.15. The lemmas give us a tool to connect group law and height, which is
a number theoretic tool. Lemma 2.13 tells us, if you start at a rational point and add
another rational point, the height of the result is under control. Lemma 2.14 tells us, if
you keeps doubling a point, the height will blow up eventually.

Lemma 2.16. The index [C(Q) : 2C(Q)] is finite.
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2.3 Descent

In this section, we will outline the proof of Mordell’s Theorem using the four lemmas
that we presented.

Lemma 4 told us that the index of 2C(Q) as a subgroup of C(Q) is finite. Take a
representative for each of the finitely many cosets of 2C(Q) in C(Q), and call them
Q1, . . . , Qn.

For each element P ∈ C(Q), P is in the coset of some Qi1 . That is,

P−Qi1 ∈ 2Γ ⇐⇒ P−Qi1 = 2P1.

Iteratively, we have

P−Qi1 = 2P1

P1 −Qi2 = 2P2

P2 −Qi3 = 2P3

P3 −Qi4 = 2P4

· · · .

For each Pj in the sequence P1, P2, P3 . . ., we have that

h(Pj −Qi) ≤ 2h(Pj) + ki

for all 1 ≤ i ≤ n. We can let k be the maximum of all ki’s such that

h(Pj −Qi) ≤ 2h(Pj) + ki.

Using Lemma 3, we have

4h(Pj) ≤ h(2Pj) + k′ = h(Pj−1 −Qij) + k′ ≤ 2h(Pj−1) + k + k′.

Thus we know that
h(Pj) ≤

1
2

h(Pj−1) +
1
4
(k + k′).

There exists some integer m such that

1
2

h(Pm−1) ≤
3
4
(k + k′),

which gives
h(Pm) ≤ k + k′.

Therefore, P = Qi1 + 2Qi2 + 4Qi3 + · · ·+ 2m−1Qim + 2mPm. Since h(Pm) is bounded and
n is finite, P is generated by {Q1, . . . , Qn} and points R ∈ C(Q) such that h(R) ≤ k + k′,
whose union is a finite set.

This method is called the method of infinite descent, originated from Fermat. He
used this to show that x4 + y4 = 1 has no rational solutions with xy 6= 0. Maybe this
was his idea to show that xn + yn = 1 for any n ≥ 3. But the margin was apparently too
small for an infinite descent. Who knows.
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2.4 Exercises for Day 2

The exercises today will walk you through proving some key steps of the lemmas that
we used in class. Throughout, let C : y2 = f (x) = x3 + ax2 + bx + c where a, b, c are
integers.

Exercise 2.17. Convince yourself that Lemma 2.12 is true.

Exercise 2.18. To prove Lemma 2.13, we want to study the relationship between P, P0,
and P + P0 for P, P0 ∈ C(Q). First we notice that the lemma is trivial if P0 = O, and so
we let P0 = (x0, y0) 6= O. Let P = (x, y) ∈ C(Q), and we can write

x =
m
M

and y =
n
N

such that they are in reduced form with M > 0 and N > 0. We will show that M3 = N2.

(i) Use the fact that P ∈ C to deduce that N2 divides M3.

(ii) Show that M divides N2m3 and deduce that M divides N2.

(iii) Show that M2 must divides N2m3, and deduce that M must divide N.

(iv) Show that M3 divides N2m3, so M3 must divide N2.

(v) Now we have N2|M3 and M3|N2 so M3 = N2. Since we showed that M|N, we
can let r = N

M . Deduce the following equations.

r2 =
N2

M2 =
M3

M2 = M

and

r3 =
N3

M3

Therefore, we can have
x =

m
r2 and y =

n
r3 .

(vi) Substitute the new expressions for x and y back into C : y2 = f (x) and clear the
denominator. Use triangle inequality to show that

|n| ≤
√

1 + |a|+ |b|+ |c|H(P).

That is, we have bounded the numerator of the y-coordinate of P in terms of H(P).
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(vii) Now we are ready to prove the lemma statement. Let P + P0 = (s, t), Express s
in terms of coordinates of P, P0 and a, b, c and when you get some term involving
y2 − x3, replace it with ax2 + bx + c. Eventually you get something like

s =
Ay + Bx2 + Cx + D

Ex2 + Fx + G

where all the coefficients are integers and are in terms of a, b, c, x0, y0 (that’s good!)

(viii) Substituting x = m
r2 , and y = n

r3 into the equation and clearing the denominator,
conclude that

H(P + P0) = H(s) ≤ max(|AK|+ |B|+ |C|+ |D|, |E|+ |F|+ |G|)H(P)2.

(ix) Taking the log will give us the desired result.
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2.5 Homomorphisms of Mordell Weil Groups

The definition of a good mathematical
problem is the mathematics it generates
rather than the problem itself.

Andrew Wiles

In Exercises for Day 2, we proved Lemma 2.12 and Lemma 2.13. The proofs of
Lemma 2.14 use similar ideas as Lemma 2.13 and are rather too technical to be fun.
Today we will outline a proof of Lemma 2.16, which states: The index [C(Q) : 2C(Q)]
is finite.

To study 2C(Q), we want to see how any point P ∈ C as mapped to 2P. Recall the
“Duplication Formula” that you found out in Exercises in Day 1

P = (x, y) 7→ 2P

x 7→ x4 − 2bx2 − 8cx + b2 − 4bc
4x3 + 4ax2 + 4bx + 4c

.

This map has degree 4. The strategy of the proof is the following.

(i) We construct a degree-2 map φ from C to C and a degree -2 map φ from C to C.

(ii) We show that C and C are isomorphic as cubic curves, hence having the isomor-
phic C(Q).

(iii) The composition of φ ◦ φ is a degree 4 map and induces a group homomorphism
C(Q)→ 2C(Q).

(iv) Use a lemma to show Lemma 4.

Lemma 2.19. Let A and B be abelian groups, and consider two homomorphisms φ : A → B
and φ : B→ A. Suppose that for all a ∈ A, and b ∈ B

φ ◦ φ(a) = 2a and φ ◦ φ(b) = 2b.

Suppose that [B : φ(A)] is finite, [A : φ(B)] is finite, then

[A : 2A] ≤ [A : φ(B)][B : φ(A)].

Example 2.20. Let A = Z×Z and B = Z× 2Z. Let φ : A → B be (a, b) → (a, 2b) and
φ : B→ A be (a, 2b) 7→ (2a, 2b). Then

φ ◦ φ((a, b)) = (2a, 2b) and φ ◦ φ((a, 2b)) 7→ (2a, 4b).

Notice that
[Z× 2Z : Z× 2Z] = 1 and [Z×Z : 2Z× 2Z] = 4,

and we can check that

4 = [Z× 2Z : 2Z× 2Z] ≤ [Z×Z : 2Z× 2Z][Z×Z : 2Z× 2Z] = 4.
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Proof. Similar to the proof of Mordell’s Theorem, we will take advantage of the fact that
[A : φ(B)] and [B : φ(A)] are finite.

Since φ(B) has finite index in A, we can find elements a1, . . . , an representing the
finitely many cosets of φ(B) in A. Since φ(A) has finite index in B, we can find elements
b1, . . . , bm to represent the finitely many cosets of φ(A) in B.

Recall our goal is to show that the number of cosets of 2A in A is finite. This amounts
to showing that for any arbitrary a ∈ A, a can be written as the sum of some element
that can be chosen from only finitely many elements in A and some element in 2A.

Since φ(B) is finite-index subgroup of A, there exists a coset representative ai such
that

a− ai ∈ φ(B) ⇐⇒ a− ai = φ(b),

for some b ∈ B. Since φ(A) has finite index in B, there exists a coset representative bj
such that b− bj ∈ φ(A) ⇐⇒ b− bj = φ(a′). Therefore,

a = ai + φ(b) = ai + φ(φ(a′) + bj) = ai + φ(bj) + 2a′.

Since the options for the combination of ai and φ(bj) are finite, 2A is indeed a finite
index subgroup in A.

To use this Lemma 2.19, we need to construct φ : C(Q) → C(Q) and φ : C(Q) →
C(Q) such that

(1) φ ◦ φ and φ ◦ φ are duplication maps.

(2) [C(Q) : φ(C(Q))] is finite.

(3) [C(Q) : φ(C(Q))] is finite.

Now we start our really long journey of proving the last statements. First we recall
that our C : y2 = f (x) = x3 + ax2 + bx + c, where a, b, c ∈ Z is a non-singular curve
with a rational point of order 2. This means that f (x) have a rational root α. Since f (x) is
a polynomial with integer coefficients and leading coefficient 1, α must be an integer, by
Rational Root Theorem. Making a change of coordinates, we can move (α, 0) to origin,
and the curve of interst is now in the form of

C : y2 = f (x) = x3 + ax2 + bx

where a, b ∈ Z.
For Step (1), we define a map between curves first. For C : y2 = x3 + ax2 + bx, define

a “conjugate curve”
C : y2 = x3 + (−2a)x2 + (a2 − 4b)x.

Let φ : C → C be defined by

φ(P) =

{(
y2

x2 , y(x2−b)
x2

)
, P 6= O, (0, 0),

O P = O or (0, 0).
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The kernel of φ is {O, (0, 0)}. Let φ : C → C be defined by

φ(P) =

{(
y2

4x2 , y(x2−b)
8x2

)
, P 6= O, (0, 0),

O P = O or (0, 0).

The kernel of φ is {O, (0, 0)}. One can check that

(i) φ, φ are group homomorphisms.

(ii) φ ◦ φ ande φ ◦ φ are duplication maps.

(iii) φC(Q) and φC(Q) is a homomorphism between C(Q) and C(Q).

To prove Lemma 2.16, we need to show that

• [C(Q) : φ(C(Q))] is finite.

• [C(Q) : φ(C(Q))] is finite.

It suffices to show one of these since the other is given by the same map.
We proceed by proving the second one:

[C(Q) : φ(C(Q))] < ∞.

Showing this amounts to showing that there is an injective homomorphism from the
quotient group C(Q)/φ(C(Q)) into a finite group.

Recall our notation from last time,

Q∗ = {multiplicative group of Q}, and (Q∗)2 = {x2 : x ∈ Q∗}.

Define the map
α : C(Q)→ Q∗/Q∗2

by

α(O) = 1 (mod Q∗2)

α(ξ) = b (mod Q∗2)

α(x, y) = x (mod Q∗2), x 6= 0.

It is not obvious that α is a group homomorphism, but you will show this in the
homework.

Proposition 2.21. The kernel of α is image of φ(C(Q)).
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Proof. The kernel of α is the set of elements in C(Q) that get sent to Q∗2. The definition
of α is as follows.

α(O) = 1 (mod Q∗2)

α(ξ) = b (mod Q∗2)

α(x, y) = x (mod Q∗2), x 6= 0.

We describe points in the image of φ.

(i) O ∈ φ(C(Q)) by definition of φ.

(ii) ξ = (0, 0) = ( y2

4x2 , y(x2−b)
8x2 ) ∈ φ(C(Q)) if and only if the polynomial f (x) has a

nonzero rational solution. This implies that in the factorization of f (x) = x(x2 +
ax + b), x2 + ax + b has a rational solution, and thus

−a±
√

a2 − 4b
2

is rational. This holds if and only if a2 − 4b is a square of a rational number if and
only if

4a2 − 4(a2 − 4b) = 16b ∈ Q∗2 ⇐⇒ b ∈ Q∗2.

(iii) P = (x, y) ∈ φ(C(Q)) with x 6= 0 if and only if x is a square square of a rational
number.

Proposition 2.22. The image of α is contained in the subgroup Q∗/Q∗2 consisting of the ele-
ments

{±pβ1
1 pβ2

2 · · · p
βt
t : βi = 0 or 1, pi divides b},

Proof. Recall in Exercises for Day 1, we know that for every point P = (x, y) ∈ C(Q)
with x 6= 0, we can write

x =
m
r2 , and y =

n
r3

in their reduced form where r = N
M in reduced form and where M, N are the original

denominators for x, y in reduced form. You also remember in Exercises in Day 1 that if
you plug in the point (x, y) in the polynomial equation of C and clear the denominator,
you get

n2 = m3 + am2r2 + bmr4 = m(m2 + amr2 + br4).

Consider the divisors of m, they either divide m2 + amr2 + br4 or don’t divide m2 +
amr2 + br4. Those divisors of m that divide m2 + amr2 + br4 must divide b since m and
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r are coprime. Those divisors of m that do not divide m2 + amr2 + br4 must have even
power in the factorization of m. Therefore,

α(P) = x =
m
r2 ≡ m ≡ ±pβ1

1 pβ2
2 · · · p

βt
t (mod Q∗2)

where pi are divisors of b, and βi = 0 or 1 for all i.
If P = (0, 0), then α(T) = b = ±pβ1

1 pβ2
2 · · · p

βt
t (mod Q∗2) where pi are divisors of b,

and βi = 0 or 1 for all i.

Since Lemma 2.16 is true, we have completed the proof of Mordell’s Theorem!!

2.6 Exercises for Day 4

Exercise 2.23.

These exercises will walk you through the proof of α is a group homomorphism from
C(Q) to Q∗/Q∗2.

Exercise 2.24. Show that for any point P = (x, y) ∈ C(Q),

α(−P) = α(P)−1 (mod Q∗2).

Exercise 2.25. Show that if y = rx + s is a line that passes through C in three general
points (not including the infinity P), the x-coordinate of the three points x1, x2, x3 satisfy
a cubic equation:

x3 + Ax2 + Bx + C = 0

. What are A, B, C in terms of r, s, a, b, c?

Exercise 2.26. Using the last exercise, what can you say about x1x2x3? Deduce that if
P1 + P2 + P3 = O, then α(P1)α(P2)α(P3) ≡ 1 (mod Q∗2). This combines with the first
exercise shows you that α is indeed a group homomorphism.

Before we compute a concrete example, let us think about an algorithm to compute
the rank of Mordell-Weil group.

Exercise 2.27. Recall that the structure theorem for finitely generated abelian group and
Mordell’s Theorem combined tell us that

C(Q) ∼= Zr ⊕Zp1
α1 ⊕Zp2

α2 ⊕ · · · ⊕Zpnαn

where pi are primes, αi are positive integers. Write out C(Q)/2C(Q). What is [C(Q) :
2C(Q)] (a number), depending on pi for all i?

Exercise 2.28. Consider the set of elements P such that 2P = O in C(Q) (Caution! These
are not just elements of order 2). Denote this group as H. How would you describe it
using [C(Q) : 2C(Q)] and the rank r of C(Q)?
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Exercise 2.29. What is the cardinality of H from last exercise, depending on a, b in the
polynomial of the curve C?

Exercise 2.30. Assuming the condition for H to have the largest cardinality holds, we
can obtain the following formula

2r =
|α(C(Q))||a(C(Q))|

4
.

In this formula, α : C(Q) is defined similarly as α but takes input from C(Q). You don’t
have to deduce this formula. This is just for you to read for your own sanity and for
the next exercises. You are welcome to think about why this formula is true and talk to
Shiyue about it.

This exercise will walk you through an example of computing the rank of a Mordell-
Weil group C(Q) and C(Q) for C : y2 = x3 − x and C : y2 = x3 + 4x. This exercise will
also help you understand the consequence of Mordell’s Theorem.

Exercise 2.31. The above exercises tell us that we need to calculate cardinality of α(C(Q))
and a(C(Q)) to get a hold of the rank. The cardinality of α(C(Q)) and a(C(Q)) depends
on factors of b, b, by Proposition 2.22.

• What is a, b, a, b in this case?

• How many ways of factorization that satisfies Proposition 2.22 does b, b have?

• What are the points in C(Q) that get sent to these factorizations?

Exercise 2.32. Do the same thing for α(C(Q)).

Exercise 2.33. Deduce that C(Q) and C(Q) is finite.
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3 Torsions

Given Mordell’s Theorem and the structure theorem of finitely generated abelian groups,
we have

C(Q) ∼= Z×Z× · · · ×Z︸ ︷︷ ︸
r is called rank

×Zp
α1
1
×Zpα2

2
× · · · ×Zpαn

n
.

The rank r of a general C(Q) can be incredibly hard to compute, despite existence of
ways to compute for specific curves. This section we study the finite part or the torsion
part of C(Q).

Theorem 3.1. Let C : y2 = f (x) = x3 + ax2 + bx + c where a, b, c ∈ Z be a non-singular
cubic curve. Recall that the discriminant of the cubic polynomial f (x)

D = −4a3c + a2b2 + 18abc− 4b3 − 27c2.

When c = 0 for Mordell’s Theorem for curves with a rational point of order two, D = b2(a2 −
4b). If P = (x, y) is a rational point of finite order, then

• x, y are integers;

• y = 0 and P has order 2; or y divides D.

Example 3.2. Consider the curve y2 = x3 − x2 + x, and we try to find all of its rational
points of finite order. Notice that (0, 0) is a rational point of order two. Since D =
b2(a2 − 4b) = −3, the possible y values are ±1,±3.

y = ±1 ⇐⇒ x = 1 ⇐⇒ P = (1,±1),

y = ±3 ⇐⇒ x3 − x2 + x− 9 = 0.

Example 3.3. Consider the curve C : y2 = x3 − x = x(x2 − 1), which we knew from
Exercises for Day 4 that the rank of C(Q) is 0. We try to find all of its rational points
of finite order. Notice that (0, 0), (±1, 0) are a rational points of order two. Since D =
b2(a2 − 4b) = 4, the possible y values are ±1,±2,±4.

y = ±1 ⇐⇒ x3 − x− 1 = 0.

y = ±2 ⇐⇒ x3 − x− 4 = 0.

y = ±4 ⇐⇒ x3 − x− 16 = 0.

So C(Q) ∼= Z4.

Recall that one technique that we have seen to prove that a rational number is in-
teger, is to show that the denominator is 1; for example, we used this to show that
non-zero rational points of order two for C : y2 = f (x) = x3 + ax2 + bx + c are in-
tegers, which allowed us to move one of the integer point on x-axis to the origin. We
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adopt the same strategy and try to show that if P = (x, y) is a rational point, then the
denominators of x, y are 1; in other words, no primes divide the denominators.

To systematically study how primes divide denominators of a rational number, we
define the p-order of a rational number as follows.

Definition 3.4. For a prime p, every non-zero rational number q can be written as m
npα ,

where m, n are coprime, and p does not divide n or m. Then the p-order of q is

ord (q) = ord
(

m
npα

)
= α.

Assume we have a rational point P = (x, y) ∈ C(Q) and some p divides the denom-
inator of x. Then we have

x =
m

npα
and y =

u
vpβ

for some α > 0. Since P ∈ C(Q), we can plug in C to get

u2

v2p2β
=

m3 + am2npα + bmn2p2α + cn3p3α

n3p3α
.

Since p does not divide u2 and v2, and α > 0 and p does not divide m we have

p 6 |(m3 + am2npα + bmn2p2α + cn3p3α).

Therefore,

−2β = ord
(

u2

v2p2β

)
= ord

(
m3 + am2npα + bmn2p2α + cn3p3α

n3p3α

)
= −3α.

Similarly, if we assume that p divides the denominator of y, then we find the same
result. So there exists some ξ > 0 such that if p divides either one of the denominators
of x, y,

α = 2ξ and β = 3ξ.

Define
C(pξ) = {(x, y) ∈ C(Q) : ord (x) ≤ −2ξ and ord (y) ≤ −3ξ}.

The important part of the proof lies in the proof that C(pα) is a subgroup of C(Q).
To show this we perform a change of coordinates and

t =
x
y

and s =
1
y

.

The curve becomes
s = t3 + at2s + bts2 + cs3.

Notice that things have shifed in the following ways:
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• O becomes the origin.

• The origin becomes O.

• A line ` : y = ux + v is `′ : s = −u
v t + 1

v .

• Group law almost changed but to get the inverse you connect with the infinity
which is the origin now.

Now we can see how this new coordinate system will help us to show things we
want. Let p be any prime. Let P = (x, y) be our rational point such that pα divides the
denominator of y or x. That is

x =
m

np2(α+i)
and y =

u
vp3(α + i)

for i ≥ 0. After changing coordinates, we have

t =
x
y
=

mw
nu

pv+i and s =
1
y
=

w
u

p3(v+i).

Now let us give ourselves more language. Let R be the set of all non-zero rational
numbers x such that ord (x) ≥ 0. R has the following properties:

• R has unique factorization.

• R has only one prime p.

• The units of R are rational numbers of p-order 0.

• If (t, s) ∈ C(pα), then t ∈ pαR and s ∈ p3αR.

To show that C(pα) is a subgroup of C(Q), we add two points and show that if pα

divides the t-coordinate of each numerator of the two rational points, then pα divides
the t-coordinate of their sum. Let P1 = (t1, s1) and P2 = (t2, s2). To ease your life, I
calculated the followings. If t1 = t2, then P1 = −P2 and P1 + P2 = O ∈ C(pα). If t1 6= t2,
then the line passing s = γt + θ through P1 and P2 will have slope

γ =
s2 − s1

t2 − t1
=

t2
2 + t1t2 + t2

1 + a(t2 + t1)s2 + bs2
2

1− at2
1 − bt1(s2 + s1)− c(s2

2 + s1s2 + s2
1)

.

Let P3 = (t3, s3) be −(P1 + P2). Substituting s = γt + θ into the curve, we get that

t1 + t2 + t3 = − aθ + 2bαθ + 3cγ2θ

1 + aγ + bγ2 + cγ3 .

Another thing we need is
θ = s1 − γt1.

We have all the information we need.
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• The numerator of γ is in p2αR since all t1, s1, t2, s2 ∈ p2αR.

• The denominator of γ disregarding 1 is in p2αR.

• θ ∈ p3αR since s1 ∈ p3αR and α ∈ p2αR and t1 ∈ pαR.

• t1 + t2 + t3 ∈ p3αR.

• t3 ∈ pαR since t1, t2 ∈ pαR.

Hence C(pα) is a subgroup of C(Q) and

t1 + t2 + t3 ∈ p3αR.

This means that
t3 ≡ t1 + t2 (mod p3vR).

The map P = (t, s) 7→ t is a map from C(pα) to additive group of rational numbers
under mod out the subgrougp p3αR. The kernel of this map is C(p3α). Therefore, we
have an injective homomorphism

C(pα)

C(p3α)
→ pαR

p3αR
.

We now want to show that P ∈ C(Q) of finite order and P 6= O does not live in any
C(p) for all p.

Proof. Let P have order m and p be any prime. Since P 6= O, m 6= 1. Suppose for
contradiction that P = (t, s) such that P ∈ C(pα), but since P is not infinity, so there
exists a µ > 0 such that

P ∈ C(pµ) but P /∈ C(pµ+1).

If p does not divide m, we have that

0 ≡ t(mP) ≡ mt(P) (mod p3µR).

Since m is coprime to p, P ∈ C(p3α).
If p divides m. We have m = pn for some n. Consider P′ = nP. Then P′ has order p.

Using the same reasoning: Suppose P ∈ C(p), then since C(p) is a subgroup of C(Q),
P′ ∈ C(p). There exists a µ > 0 such that

P ∈ C(pµ) but P /∈ C(pµ+1).

Then
0 = t(pP′) ≡ pt(P′) (mod p3µR).

Therefore, P ∈ p3µ−1R, a contradiction.
Therefore, P has integer coordinates.
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Let P = (x, y) such that P has finite order. Then 2P also has finite order and both P
and 2P have integer coordinates. Let 2P = (z, w). The “Duplication Formula”,

2x + z =

(
f ′(x)
2y

)2

− a.

Since x, z are integers, f ′(x)
2y are integers, so 2y| f ′(x) and y| f (x) since

D = r(x) f (x) + s(x) f ′(x).

Hence y|D.
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